The growth of bioconvection patterns in a uniform suspension of gyrotactic micro-organisms.
نویسندگان
چکیده
'Bioconvection' is the name given to pattern-forming convective motions set up in suspensions of swimming micro-organisms. 'Gyrotaxis' describes the way the swimming is guided through a balance between the physical torques generated by viscous drag and by gravity operating on an asymmetric distribution of mass within the organism. When the organisms are heavier towards the rear, gyrotaxis turns them so that they swim towards regions of most rapid downflow. The presence of gyrotaxis means that bioconvective instability can develop from an initially uniform suspension, without an unstable density stratification. In this paper a continuum model for suspensions of gyrotactic micro-organisms is proposed and discussed; in particular, account is taken of the fact that the organisms of interest are non-spherical, so that their orientation is influenced by the strain rate in the ambient flow as well as the vorticity. This model is used to analyse the linear instability of a uniform suspension. It is shown that the suspension is unstable if the disturbance wavenumber is less than a critical value which, together with the wavenumber of the most rapidly growing disturbance, is calculated explicitly. The subsequent convection pattern is predicted to be three-dimensional (i.e. with variation in the vertical as well as the horizontal direction) if the cells are sufficiently elongated. Numerical results are given for suspensions of a particular algal species (Chlamydomonas nivalis); the predicted wavelength of the most rapidly growing disturbance is 5-6 times larger than the wavelength of steady-state patterns observed in experiments. The main reasons for the difference are probably that the analysis describes the onset of convection, not the final, nonlinear steady state, and that the experimental fluid layer has finite depth.
منابع مشابه
Non linear bioconvection in a deep suspension of gyrotactic swimming micro organisms
The non-linear structure of deep, stochastic, gyrotactic bioconvection is explored. A linear analysis is reviewed and a weakly non-linear analysis justifies its application by revealing the supercritical nature of the bifurcation. An asymptotic expansion is used to derive systems of partial differential equations for long plume structures which vary slowly with depth. Steady state and travellin...
متن کاملGyrotactic bioconvection at pycnoclines
Bioconvection is an important phenomenon in aquatic environments, affecting the spatial distribution of motile micro-organisms and enhancing mixing within the fluid. However, stratification arising from thermal or solutal gradients can play a pivotal role in suppressing the bioconvective flows, leading to the aggregation of micro-organisms and growth of their patchiness. We investigate the comb...
متن کاملGravity-dependent changes in bioconvection of Tetrahymena and Chlamydomonas during parabolic flight: increases in wave number induced by pre- and post-parabola hypergravity.
Bioconvection emerges in a dense suspension of swimming protists as a consequence of their negative-gravitactic upward migration and later settling as a blob of density greater than that of water. Thus, gravity is an important parameter governing bioconvective pattern formation. However, inconsistencies are found in previous studies dealing with the response of bioconvection patterns to increas...
متن کاملWavelengths of bioconvection patterns
Bioconvection occurs as the result of the collective behaviour of many micro-organisms swimming in a fluid and is realised as patterns similar to those of thermal convection which occur when a layer of water is heated from below. A methodology is developed to record the bioconvection patterns that are formed by aqueous cultures of the single-celled alga Chlamydomonas nivalis. The analysis that ...
متن کاملWavelengths of Gyrotactic Plumes
Bioconvection occurs as the result of the collective behaviour of many microorganisms swimming in a fluid and is realized as patterns similar to those of thermal convection which occur when a layer of fluid is heated from below. We consider the phenomenon of pattern formation due to gyrotaxis, an orientation mechanism which results from the balance of gravitational and viscous torques acting on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of fluid mechanics
دوره 195 شماره
صفحات -
تاریخ انتشار 1988